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Final Report

l. ARO Proposal Number 35904-MA
2. Period Covered by Report February 15, 1997 through September 30, 2000
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1 MAIN TOPICS OF RESEARCH CARRIED OUT
UNDER THE GRANT

Research was carried out in the areas of Image Analysis modeling the phenomena
of conformation and coupling, Markov Chain Monte Carlo methods - their limitations
and range of applicability, Bayesian Nonparametric Computations - approximations
and convergence, predicting a random variable based on a discretized covariate, Flow
Models - flows in queues with finite buffers and flows in networks with losses and
capacity controls, and survey articles on modern nonparametric methods.

The later sections give more detailed non-technical summaries on the actual re-
search that ensued from this grant.

2 Publications and Technical Reports under the
Grant

1 “Conformation in Metric Pattern Theory: Strong Coupling” jointly with Ulf Grenan-
der ,

2 “Conformation in Metric Pattern Theory: Weak Coupling” jointly with Ulf Grenan-
der

2 “Joint distributions, conditional distributions and the Gibbs sampler” jointly with
K. Athreya

4 “Ergodicity and Tail o-fields of Markov Chains” jointly with Jim Lynch
5 “Strong Approximations to Dirichlet Distributions with Applications”

6 “Optimal discretization of the independent variable X for predicting the dependent
variable Y A

7 “Asymptotic Bounds on the Overflow Probability in Markov-Modulated Fluid
Models” jointly with Shau-Ming Wu

8 “Loss of Power in Transmission Networks with a Large Number of Nodes”




9 “Flows, Capacities of Channels and Utilization of Networks”
10 “Nonparametric Statistics: Rank-Based Methods” jointly with Myles Hollander

11 “Nonparametric Statistics: Advanced Computational Approaches” jointly with
Myles Hollander

3 Nontechnical summary of research carried out
under the grant

Papers nos. 1 and 2 deal with problems in Image Analysis. We have known for
some time how to generate random images that are realistic, by describing all realistic
images as transformations of a template, and placing a distribution on the space of
transformations, which generally forms a group. In papers nos. 1 and 2, we model the
boundaries of the two random cells as straight lines connecting a large number of sites
which are randomly perturbed. The random boundaries of the two cells, attract one
another so that they fuse on a particular section of their boundaries. This is modeled
by expressing the energy function, describing the randomness of the boundaries, as
the sum of three factors - two to describe the randomness of the cells as if they were
behaving independently, and the third, parameterized by a constant, called the force
of coupling, forcing the the cells to conform on a certain section of the boundary.
The final random boundaries of the cells are influenced by these three factors. The
influence of the first two factors has been studied before in many papers, including
ours. In paper no. 1 we allow the number of sites on the boundary to go to co and
the force of coupling to go to co. We call this the case of strong coupling. We show
that the limit is still random but shows the strong tendency to conform.

In paper no. 2, we allow the number of sites to go to oo but keep the force
of coupling to remain constant. We call this the case of weak coupling. For this
case, we obtain the limiting distribution. The mean of this distribution is shown to
be the solution of a second order differential equation which exhibits the effects of
conformation. We also present several generalizations of the energy functions, and
present similar results.

Paper 3 clarifies the situation in Gibbs sampling, where information pertaining
conditional distributions alone is used to generate an observation from the joint dis-
tribution. Suppose that P and @ are transition functions on S; x S and S; x &i,
respectively; these are like two conditional distributions. We explore conditions for



the existence and uniqueness of a joint distribution 7 with conditional distributions P
and @ as well as the convergence of the associated Gibbs sampler to this 7. Roughly
speaking, what is needed is a multiplicative condition on P and () with appropriate
integrability and an irreducibility condition on R = PQ). Examples are given to illus-
trate the consequences of the violation of some of these conditions and to demonstrate
that the mere convergence of the Gibbs sampler does not insure the uniqueness of the
joint distribution. It is also shown that Markov chains arising in Gibbs sampling are
necessarily aperiodic. Similar results are obtained when we studying more than two
variables.

Paper 4 deals with an interesting relationship between the ergodicity of Markov
chains and the triviality of their tail o-fields. Essentially, the main result states that
if the Markov chain has a stationary distribution and the tail o-field is trivial, then
the Markov chain is ergodic.

Dirichlet process priors have proved very useful in Bayesian nonparametric anal-
ysis. There has been a lot of progress with computational Bayesian methods and it
is but natural that results concerning approximations to Dirichlet priors will be very
useful. In paper no. 5, we show two types of approximations for Dirichlet process
clarify the nature of convergence and prove the convergence. Some applications to
hierarchical Bayes problems are also presented.

Paper no. 6 arose from listening to scientists at the DOD Polygraph Institute.
They want to predict a certain random variable Y on the basis of another variable
X, which will be used only in a discretized form. That is they divide the range
of X into 7 intervals and consider the discretized random variable X' taking values
1,2,...,7 on these intervals. The intervals used for this purpose looked strange,
but the scientists said that it was based on recommendations of earlier scientists. I
suggested that they use equiprobable intervals of X for this discretization, based on an
analogy in goodness-of-fit problems. The scientists worked on the new discretization
and reported good results; they also published a paper in a journal on this method
of discretization. It is only later it struck me that I should go and theoretically prove
that this is the optimal thing to do. This is the genesis of this paper. To state it a
little more formally, consider a pair of random variables (X,Y’) and suppose that we
want to predict the dependent variable Y from the independent variable X. Break
up the range of X into & intervals and define the discretized variable X’ as equal to
1,2, ...,k on those intervals. Can X' predict ¥ as well as X can predict Y? What is
the loss in predictive ability? For a fixed value of k, what is the best way to divide
the range of X into k intervals? We describe the optimum way to divide the range
of X; this optimum possesses some surprising properties for which we do not see
an obvious intuitive explanation. The intervals of this optimal dicretization are not
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equiprobable intervals, as I had suggested earlier. We give a complete solution for
the case when (X,Y) is bivariate normal. Even though the discretization based on
equiprobable intervals is not optimal, its performance is very close to the optimal as
seen from numerical calculations. This may explain why the DODPI scientists were
getting good results based on my suggestion.

The topic of flows appears in many contexts. Flows could refer to the flow of
electric current or telecommunication signals through a network. It could refer to the
flow of water through several dams, or to customers through a queue. Paper no. 7
deals with the latter kind of flows while papers nos. 8 and 9 deal with the former.

In paper no. 7 we are examining strategies to keep a dam or a storage device as
full as possible and not let it overflow, because there is a severe penalty for such an
overflow. We use the the terminology of queuing theory to state this problem more
precisely. Consider a buffer of finite size fed by input sources and emptied by demand
sources, all modeled by Markov processes. Such models are relevant in telecommu-
nication networks, computer networks and inventory systems. In such systems, an
overflow of the buffer corresponds to a catastrophic failure. Engineers would like to
find ways of designing the system and the buffer size so that the probability of such
an event is greatly minimized. In this paper we establish a large deviation princi-
ple which allows us to construct asymptotic bounds on the overflow probability in
Markov-modulated fluid flow models as the buffer size goes to infinity. These asymp-
totic bounds are useful in the optimum design of physical systems governed by such
models, namely to reduce costs and maximize performance.

Papers nos. 8 and 9 arose from conversations with scientists interested in efficient
networks for transmission and in efficient utilization of networks. Suppose that a cer-
tain number units of power (strength of signal) are present at an originating node and
are transmitted through a large number of intermediate nodes. Between nodes, there
will be naturally occuring dissipation as well as some boosting of power obtainable
at some cost. We explore a general probabilistic model to find the distribution of
the total loss/boost in transmission, which is the same as knowing the distribution of
the final remaining units of power (strength of signal) after transmission has traveled
though the large number of nodes.

To make the problem more mathematical, we assume that X units are present
at the originating node 0 and it is transmitted through nodes 1 = 1,2,...,n. The
number of units available at node 4, after losses/boosts at previous sites, will be
denoted by X;, i =1,2,...,n. The sites themselves do not have to be on a straight
line. We are interested in the final remaining units of power (strength of signal) after
traveling through nodes 1,2, ..., n, that is in the distribution of X,,, where n is large.

There is both dissipation and boosting of power (signal) en route, and so the
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loss/boost factors, namely the non-negative random variables p; = 5()—%,2 =1,2,...,n
will play an important role. If the p;’s are all strictly less than 1, there is only
dissipation, and thus X,, the available power at the end, will be close to zero. To
avoid this straightforward case, one must assume that the p;’s hover around 1, which
means that it can take values less than and greater than 1; this corresponds to the
practical consideration that there must be boosters available en-route.

We exhibit a class of distributions for the loss/boost factors and give a range of
parameters for these distributions under which the final signal strength has a limiting
distribution. We discover further conditions under which the average of the final signal
strength will be equal to the initial strength. Under other alternative conditions there
is a loss or a boost. These results can be used to help in the design of transmission
networks.

In paper no. 9, we consider a network with X units of power at the source.
The power flows through a large number of available channels Cy, Cs, ..., C,. Each
channel C; has a lower capacity L; and an upper capacity U;. Channel C; will fall
into disuse if one tries to transport less than L; units through it and thus one should
maintain a flow of at least L; units all the time. Trying to transport more than U;
units through channel C; will destroy that channel. We will assume that units to be
transported X, the lower capacities L; and upper capacities U; are random. We define
a measure M of the level of utilization of the network. We will give approximations to
the probability that the the available channels are adequate, and obtain the limiting
distribution of the measure of utilization M.

Papers nos. 10 and 11 are invited articles for the International Encyclopedia for
Social and Behavioral Sciences describing the field of Nonparametrics. Paper no.
10 describes rank based methods and paper no. 11 deals with the recent advanced
nonparametric methods based on computers.

The success of Nonparametric methods is based on their wide applicability; these
methods typically require only modest assumptions concerning the underlying pop-
ulations from which the data are drawn. Under these mild assumptions, exact hy-
pothesis tests, exact confidence intervals, exact multiple comparison procedures, and
exact confidence bands can be obtained. Nonparametric methods have excellent effi-
ciency properties with respect to their parametric competitors and are also robust in
the sense that they are relatively insensitive to outlying observations and departures
from the model. In paper no. 10, we present some classical rank-based nonparametric
methods in two- and k-sample location problems.

Statistical methods are useful in obtaining information about the unknown state
of nature or the “parameter” as it is usually referred to in the literature. A statis-




tician collects suitable data whose distribution depends on the unknown parameter.
A statistical inference procedure is then devised to produce information about the
unknown parameter or a function of that parameter. The classical methods of in-
ference assume that the probability distributions that govern the data depend only
a few unknown quantities (or parameters). Such procedures are called parametric
procedures. When one is not able to make such strong assumptions about the proba-
bility models that govern the data, and/or when one can be more sure of the rankings
among the data than the exact values, one uses robust inference procedures known
as nonparametric methods. Tests and estimates based on the simpler nonparametric
methods can be obtained from easy computations based on the data. Procedures
that have validity under more general models will require more heavy computations.
When there is some uncertainty about the probability models and/or when expert
information concerning the problem at hand is available, one should use Bayesian
methods. These methods can also tend to be computationally intensive. In paper
no. 11 we describe briefly the main ingredients of some new Bayesian and computa-
tional methods in nonparametric inference. These include bootstrapping and Gibbs

sampling.

4 Professional activities during the period covered
by the grant

e Participated in the ASA/IMS Joint Annual Meeting at Anaheim, CA — August
1997.

e Participated in the Army Statistician’s Conference at George Mason University,
Fairfax, VA — October 1997.

e Presented an invited paper “Further properties of Dirichlet measures” at the
Meeting of the Bernoulli Society held at the Indian Statistical Institute, Cal-
cutta, India, January 1998.

e Gave an invited talk “Further properties of Dirichlet measures” at the 1998
Luckacs Symposium “Statistics for the 21st Century” at Bowling Green Uni-
versity, Bowling Green, OH — April 24-26, 1998



Gave an invited talk “Further properties of Dirichlet measures” at the Inter-
national Conference in Reliability and Survival Analysis at Northern Illinois
University, Dekalb, IL — May 21-24, 1998

External Reviewer of the Applied Statistics Master’s Program at New Jersey
Institute of Technology, Newark, NJ — June 8, 1998

Presented an invited paper “Specification of Joint Distributions from Marginal
and Conditional Distributions” at the Symposium on Decision Theory at Pur-
due University, Lafayette, IN — June 18-21, 1998

Participated in the ASA/IMS Joint Annual Meeting at Dallas, TX ~ August9-
13, 1998

Presented a paper “Conformation in Metric pattern Theory” at the Army Statis-
tician’s Conference at New Mexico State University, Las Cruces, NM — October

21-23, 1998

Gave a talk “Conformation in Metric pattern Theory” at the Meeting of the
Florida Chapter of the American Statistical Association, University of Florida,
Gainesville, FL. — March 1999

Participated in the ASA/IMS Joint Annual Meeting at Baltimore, ND — August
1999

Gave a colloquium talk “Reduction in Predictive Ability Caused by Discretiza-
tion of the Independent Variable” in the Department of Statistics, Florida State

University, October 1999

Presented a paper “Reduction in Predictive Ability Caused by Discretization of
the Independent Variable” at the Army Statistician’s Conference at West Point,

NY - October 1999

Presented an invite plenary talk “Limit Theorems for Models in Pattern Analy-
sis” at the International Conference on Stochastic Processes and its Applications
at Cochin, India — December 1999

Presented an invited talk “Approximations to Dirichlet Processes” at the 2000
Annual meeting of the Canadian Statistical Association in Ottawa in June 2000.




5 Ph. D. Degrees Awarded

Shau-Ming Wu “Asymptotic Bounds for Markov Modulated Fluid Models, Based
on the Large Deviation Principle”.

6 Honors Received

None
7 Service to DOD Institutes

Member of the Scientific Review Panel of the DOD Polygraph Institute
Outside of this committee, I have given research advice, which has improved some
of their statistical practices and also led one member of the Institute to publish a

paper in a journal.




